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Abstract

In this paper, we analyze assortativity in a wide class of preferential attachment models
(PA-class). It was previously shown that the degree distribution in all models of the PA-class
follows a power law. Also, the global and the average local clustering coefficients were analyzed.
We expand these results by analyzing the assortativity property of the PA-class of models.
Namely, we analyze the behavior of dnn(d) which is the average degree of a neighbor of a vertex
of degree d.
Keywords: networks, random graphs, preferential attachment, assortativity, average neighbor
degree

1 Introduction

Nowadays, there is a great deal of interest in structure and dynamics of real-world networks, from
Internet and society networks [1, 4, 7] to biological networks [2]. The key problem is how to build
a model which describes the properties of a given network. Such models are used in physics,
information retrieval, data mining, bioinformatics, etc. [1, 4, 5, 17].

Real-world networks have some common properties [12, 19, 20, 23]. For example, for the major-
ity of studied networks, the degree distribution was observed to follow the power law, which means
that the portion of vertices with degree d decreases as d−γ for some γ > 0 [3, 4, 8, 11]. Another
important property of complex networks is high clustering coefficient [20] which, roughly speaking,
measures how likely two neighbors of a vertex are connected.

Another key metric in complex networks analysis is the assortativity coefficient which was first
introduced by Newman [18] as the Pearson’s correlation coefficient for the pairs {(di, dj)|eij ∈ E}. In
assortative graphs edges tend to connect vertices of similar degrees, while in disassortative networks
vertices of low degree are more likely to be connected to vertices of high degree. Assortativity
coefficient lies between -1 and 1; when this coefficient equals 1, the network is said to have perfect
assortative mixing patterns, when it equals 0, the network is non-assortative, while at -1 the
network is completely disassortative. However, as discussed in [13, 15], despite Pearson’s correlation
coefficient is most commonly used to measure assortativity of networks, this coefficient is size-
depend when the degree distribution has infinite variance.

Another way to analyze assortativity is to consider the behavior of dnn(d) — the average degree
of a neighbor of a vertex of degree d — introduced in [22]. A graph is called assortative if dnn(d) is
an increasing function of d, whereas it is referred to as disassortative when dnn(d) is a decreasing
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function of d. We analyze dnn(d) instead of measuring the correlation since the obtained function
of d can give a deeper insight into the network structure.

It was previously shown that in some real-world networks dnn(d) behaves as dν for some ν, which
can be positive (assortative networks) or negative (disassortative networks) [4, 10]. Interestingly,
as we show in this paper, in a wide class of preferential attachment models Ednn(d) ∝ log(d) as
d→∞.

Assortativity has many applications, for instance, it can be used in the epidemiology. In social
networks we usually observe assortative mixing, so diseases targeting high degree individuals are
likely to spread to other high degree nodes. On the other hand, biological networks are usually
disassortative, therefore vaccination strategies that specifically target the high degree vertices may
quickly destroy the epidemic network.

In this paper, we study the behavior of dnn(d) in the T-subclass of the PA-class of models, which
was first introduced in [21]. This class includes many well-known models based on the preferential
attachment principle: LCD [6], Buckley-Osthus [9], Holme-Kim [14], RAN [25], etc. Despite the
fact that the T-subclass generalizes many different models, we are able to rigorously analyze dnn(d)
in the whole class of models for γ > 3 (the case of a finite variance). In particular, we prove that in
this case the expectation of dnn(d) asymptotically behaves as log(d) (up to a constant multiplier).
However, this approximation works reasonably well only for very large values of d and for d < 104

we observe a different behavior which may look like dν for some ν > 0, as it was observed in some
real-world networks.

However, if the degree distribution has infinite variance, dnn(d) is much harder to analyze.
For the configuration model this problem is addressed in [24]. Namely, it is shown that when the
variance of the degree distribution is infinite, dnn(d) scales with n, where n is the number of vertices,
and a corresponding central limit theorem is proven. It turns out that similar problem arises in the
PA-class of models, and in the case of infinite variance the precise asymptotics for dnn(d) cannot
be obtained, as we discuss further in the paper. However, using some heuristics, we are able to
make hypotheses on the expected behavior of dnn(d). Thus, for γ = 3 we obtain dnn(d) ∝ log(n)

and for γ < 3 the asymptotics is dnn(d) ∝ d−(3−γ)n
3−γ
γ−1 . It turns out that these hypotheses agree

well with our simulations.
The remainder of the paper is organized as follows. In Section 2, we give a formal definition of

the PA-class and present some relevant known results. In Section 3, we state new theoretical results
on the behavior of dnn(d); then we prove all the theorems; and finally we discuss our hypotheses
for the case γ ≤ 3. In Section 4, we make some simulations in order to illustrate our results for
dnn(d). Section 5 concludes the paper.

2 Generalized Preferential Attachment

2.1 Definition of the PA-class

Let us formally define the PA-class of models which was first proposed in [21]. Let Gnm (m is a
constant parameter of the model, n ≥ n0) be a graph with n vertices {1, . . . , n} and mn edges
obtained as a result of the following process. We start at the time n0 from an arbitrary graph Gn0

m

with n0 vertices and mn0 edges. On the (n + 1)-th step (n ≥ n0), we make the graph Gn+1
m from

Gnm by adding a new vertex n+ 1 and m edges connecting this vertex to some m vertices from the
set {1, . . . , n, n+ 1}. Denote by dnv the degree of a vertex v in Gnm. If for some constants A and B
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the following conditions are satisfied

P
(
dn+1
v = dnv | Gnm

)
= 1−Ad

n
v

n
−B 1

n
+O

(
(dnv )2

n2

)
, 1 ≤ v ≤ n , (1)

P
(
dn+1
v = dnv + 1 | Gnm

)
= A

dnv
n

+B
1

n
+O

(
(dnv )2

n2

)
, 1 ≤ v ≤ n , (2)

P
(
dn+1
v = dnv + j | Gnm

)
= O

(
(dnv )2

n2

)
, 2 ≤ j ≤ m, 1 ≤ v ≤ n , (3)

P(dn+1
n+1 = m+ j) = O

(
1

n

)
, 1 ≤ j ≤ m , (4)

then the random graph process Gnm is a model from the PA-class. Note that O(·) above are defined
as n→∞. Here, as in [21], we require 2mA+B = m and 0 ≤ A ≤ 1. We further omit n in dnj for
simplicity of notation.

As it is explained in [21], even fixing values of parameters A and m does not specify a concrete
procedure for constructing a network. There are a lot of models possessing very different proper-
ties and satisfying the conditions (1–4), e.g., LCD [6], Buckley-Osthus [9], Holme-Kim [14], and
RAN [25] models.

2.2 Power-law Degree Distribution

Let Nn(d) be the number of vertices of degree d in Gnm. The following theorems on the expectation
of Nn(d) and its concentration were proved in [21].

Theorem 1 For every model in PA-class and for every d = d(n) ≥ m

ENn(d) = c(m, d)
(
n+O

(
d2+

1
A

))
,

where

c(m, d) =
Γ
(
d+ B

A

)
Γ
(
m+ B+1

A

)
A Γ

(
d+ B+A+1

A

)
Γ
(
m+ B

A

) d→∞∼
Γ
(
m+ B+1

A

)
d−1−

1
A

A Γ
(
m+ B

A

) (5)

and Γ(x) is the gamma function.

Theorem 2 For every model from the PA-class and for every d = d(n) we have

P
(
|Nn(d)− ENn(d)| ≥ d

√
n log n

)
= O

(
n− logn

)
.

These two theorems mean that the degree distribution follows (asymptotically) the power law with
the parameter γ = 1 + 1

A .
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2.3 Clustering Coefficient

A T-subclass of the PA-class was introduced in [21]. In this case, the following additional condition
is required:

P
(
dn+1
i = dni + 1, dn+1

j = dnj + 1 | Gnm
)

= eij
D

mn
+O

(
dni d

n
j

n2

)
, (6)

where 1 ≤ i, j ≤ n, eij is the number of edges between the vertices i and j in Gnm and D is a
non-negative constant. Note that this property still does not define the correlation between edges
completely, but it is sufficient for studying the clustering coefficients. Also, this subclass still covers
all well-known models mentioned above.

There are two well-known definitions of the clustering coefficient of a graph G. The global
clustering coefficient C1(G) is the ratio of three times the number of triangles to the number of pairs
of adjacent edges in G. The average local clustering coefficient is defined as C2(G) = 1

n

∑n
i=1C

i,

where Ci is the local clustering coefficient for a vertex i: Ci = T i

P i2
, T i is the number of edges

between the neighbors of the vertex i and P i2 is the number of pairs of neighbors.
The clustering coefficients for the T-subclass were analyzed in [21] and [16]. For example, in [21]

it was proven that in some cases (2A ≥ 1) the global clustering coefficient C1(G
n
m) tends to zero as

the number of vertices grows for all models from the PA-class. Additionally, it was shown that the
average local clustering coefficient C2(G

n
m) does not tend to zero for the T-subclass with D > 0.

In [16] the local clustering coefficient averaged over the vertices of degree d was analyzed. It was
proven that this coefficient C(d) asymptotically decreases as 2D

Am · d
−1 for A < 3

4 .

3 Theoretical results

In this section, we first present our theoretical results on the behavior of dnn(d) in the T-subclass
with A < 1/2. Second, we prove these results. Finally, we discuss our hypotheses about the
behavior of dnn(d) for the case A ≥ 1

2 .

3.1 Main results (A < 1/2)

Denote by Sn(d) the sum of the degrees of all neighbors of all vertices of degree d:

Sn(d) =
∑
i:di=d

∑
j:ij∈E(G)

dj ,

where E(G) is the set of edges of the graph G. One possible way to analyze the assortativity of
an undirected graph G is to consider the average degree of the neighbors of vertices with a given
degree d:

dnn(d) =
Sn(d)

Nn(d) · d
. (7)

If dnn(d) is an increasing function of d, then the network is called assortative. Vice-versa, in the
disassortative case dnn(d) decreases.

In order to estimate Ednn(d), we first estimate ESn(d) and then use Theorems 1 and 2 on the
behavior of Nn(d). Namely, we prove the following theorems.

Theorem 3 Let Gnm belong to the T-subclass with A < 1
2 . Then, for any ε > 0 and every d =

d(n) ≥ m
ESn(d) = M(d)

(
n+O

(
n2A+εdξ

))
, (8)
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where ξ = max
{

3 + 1
A − 4A, 2

1−A

}
and

M(d) = (Ad+B + 1)

(
X

Am+B + 1
+

d∑
i=m+1

Y (i)

)
· c(m, d), (9)

X =
m

A(m− 1) +B + 1

(
B − D

m
+

(A(m− 1) + 2B + 1) · (Am+B + 1)

1− 2A

)
,

Y (i) =
1

A(i− 1) +B + 1

(
(B −D/m)i

Ai+B + 1
+

(D/m) · (i− 1)

A(i− 1) +B
+m

)
.

Asymptotically we have

M(d)
d→∞∼ Am+B

A2
·

Γ
(
m+ B+1

A

)
Γ
(
m+ B

A

) · log(d) · d−
1
A . (10)

Theorem 4 Let Gnm belong to the T-subclass of the PA-class with A < 1
2 . Then for any ε > 0 and

for every d = d(n) ≥ m

Ednn(d) =
M(d)

d c(m, d)

(
1 +O

(
n2A+εdξ

n
+
d2+

1
A log n√
n

))
,

where ξ = max
{

3 + 1
A − 4A, 2

1−A

}
. Note that asymptotically

M(d)

d · c(m, d)

d→∞∼ Am+B

A
· log(d) . (11)

According to Theorem 4, all networks from the T-subclass with A < 1
2 are assortative. However,

asymptotically Ednn(d) increases slowly, as log(d), unlike dν often observed in real-world networks.
We discuss this in more details in Section 4.

3.2 Proofs

3.2.1 Proof of Theorem 3

In the proof we use the notation θ(·) for error terms. By θ(X) we denote an arbitrary function
such that |θ(X)| < X.

We need the following auxiliary theorem.

Theorem 5 Let Wn be the sum of the squares of the degrees of all vertices in a model from the
PA-class with A < 1

2 . Then for any ε > 0

EWn =
m

1− 2A
(m+ 4B + 1)n+O(n2A+ε).

This statement is mentioned in [21] and it can be proven by induction on n. We omit the
proof since it is straightforward and its main idea is similar to the idea of the proof of Theorem 3
described below.

We prove Theorem 3 by induction on d and for each d we use induction on n. Let us prove that

ESn(d) = M(d)
(
n+ θ

(
Cn2A+εdξ

))
(12)

for some constant C > 0.
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Base case. First, for all d let us obtain the basis. Namely, we prove the theorem for all n ≤ Qd2,
where Q is some constant which will be specified further in the proof. Note that Nn(d) = O

(
n
d

)
,

since we have O(n) edges in any graph Gnm. Also, by the same reason, the sum of the degrees of

the neighbors of each vertex equals O(n). Therefore, we have Sn(d) = O
(
n2

d

)
and, for n ≤ Qd2

and ξ ≥ 3 + 1/A− 4A, we have ESn(d) = M(d)O
(
n2A+εdξ

)
and so Equation (12) holds.

Inductive step for d = m, n > Qd2. At each step of the process we add a vertex n+ 1 and m
edges. The following events may affect Sn(m).

1. At least one edge hits a vertex of degree m, then Sn(m) is decreased by the sum of the degrees
of the neighbors of this vertex. This happens with probability Am+B

n +O
(

1
n2

)
. Summing over

all vertices of degree m we obtain that ESn(m) is decreased by
(
Am+B
n +O

(
1
n2

))
· ESn(m) .

2. Exactly one edge hits a neighbor of a vertex of degree m and no edges hit the vertex itself,

then Sn(m) is increased by 1. The probability to hit a neighbor is Adi+B
n + O

(
d2i
n2

)
, where

di is the degree of this neighbor. We have to subtract the probability to hit both a vertex of

degree m and its neighbor which is D
mn +O

(
mdi
n2

)
. Summing over all neighbors of all vertices

of degree m, we obtain that ESn(m) is increased by:

AESn(m)

n
+
B −D/m

n
mENn(m) +O

E
∑

i:i is a neighbor
of a vertex of degree m

d2i

n2


=
AESn(m)

n
+
B −D/m

n
mENn(m) +O

(
max{n, n3A}

n2

)
.

Here we used the fact that:

E
( ∑

i:i is a neighbor
of a vertex of degree m

d2i

)
≤ E

 ∑
i∈V (Gmn )

d3i

 = O
(
max{n, n3A}

)
.

3. If i > 1 edges hit a neighbor j of a vertex of degree m, which happens with probability

O

(
d2j
n2

)
, and no edges hit the vertex itself, then Sn(m) is increased by i. Reasoning as above,

we obtain that ESn(m) is increased by O
(
max{n,n3A}

n2

)
.

4. The vertex n+1 connects to some vertices, so Sn(m) is increased by the sum of the degrees of

these vertices. The probability to hit a vertex of degree di is Adi+B
n +O

(
d2i
n2

)
and after that

this vertex will have a degree di + 1. Summing over i we obtain that ESn(m) is increased by:

E
∑

i∈V (Gmn )

(di + 1)

(
Adi +B

n
+O

(
d2i
n2

))
=
A

n
EWn + (2B + 1)m + O

(
max{n, n3A}

n2

)
.

(13)
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Combining all the cases considered above, we get

ESn+1(m) = ESn(m)−
(
Am+B

n
+O

(
1

n2

))
ESn(m) +

AESn(m)

n

+
B −D/m

n
mENn(m) +

A

n
EWn + (2B + 1)m+O

(
max{n, n3A}

n2

)
. (14)

We are ready to show the inductive step. Assume that (12) holds for all Si(m) with i ≤ n and
let us show this equality for i = n+ 1. Using (14) we get

ESn+1(m) =

(
1− A(m− 1) +B

n
+O

(
1

n2

))
M(m)

(
n+ θ

(
Cn2A+εmξ

))
+
B −D/m

n
m · c(m,m) (n+O(1)) +

A

n
· m

1− 2A
(m+ 4B + 1)n

+O
(
n2A−1+ε

)
+ (2B + 1)m+O

(
max{n, n3A}

n2

)
. (15)

Here we use that EWn = m
1−2A (m+ 4B + 1)n+O(n2A+ε) and take ε < ε.

According to (9) for d = m:

M(m) =
m · c(m,m)

A(m− 1) +B + 1

(
B − D

m
+

(A(m− 1) + 2B + 1) · (Am+B + 1)

1− 2A

)
. (16)

Combining (15), (16) and the fact that c(m,m) = 1/(Am+B + 1) (see Equation (5)) we get

ESn+1(m) = M(m)(n+ 1) +

(
1− A(m− 1) +B

n

)
M(m)θ

(
Cn2A+εmξ

)
+O

(
Cn2A−2+ε

)
+O(n2A−1+ε) .

To complete the proof for d = m we have to show that the obtained error term is not greater
than CM(m)(n+ 1)2A+ε for some large enough C:

CM(m)(n+1)2A+εmξ ≥
(

1− A(m− 1) +B

n

)
M(m)Cn2A+εmξ+O

(
Cn2A−2+ε

)
+O(n2A−1+ε).

This inequality holds for large enough C and n > Qm2 with some Q. This completes the inductive
step for d = m.

Inductive step for d > m, n > Qd2. Similarly to the previous case, at each step n + 1 the
following events may affect Sn(d).

1. At least one edge hits a vertex of degree d. In this case, ESn(d) is decreased by
(
Ad+B
n +O

(
d2

n2

))
·

ESn(d).

2. One edge hits a vertex of degree d− 1, so Sn(d) is increased by the sum of the degrees of the
neighbors of this vertex plus the degree of the new vertex. We get(

A(d− 1) +B

n
+O

(
d2

n2

))
· (ESn(d− 1) +m · ENn(d− 1)) .

7



Taking into account the case when, in addition, exactly one edge hits a neighbor of this vertex,
we get that ESn(d) is additionally increased by:

(d− 1)ENn(d− 1) · D
mn

+O

(
(d− 1)ESn(d− 1)

n2

)
.

3. Exactly one edge hits a neighbor of a vertex of degree d and no edges hit the vertex itself. In
this case, ESn(d) is increased by:

AESn(d)

n
+
B −D/m

n
dENn(d) +O

(
max{n, n3A}

n2

)
+O

(
d · ESn(d)

n2

)
.

4. All the cases with multiple edges affect ESn(d) by:

O

(
max{n, n3A}

n2

)
+O

(
d2

n2

)
ESn(d) +O

(
d3

n2

)
ENn(d). (17)

Combining all the cases considered above, we get

ESn+1(d) = ESn(d)

[
1− A(d− 1) +B

n

]
+
A(d− 1) +B

n
· ESn(d− 1)

+

(
D(d− 1)

mn
+m

A(d− 1) +B

n

)
ENn(d− 1) +

(B −D/m)d

n
ENn(d)

+O

(
d2

n2

)
ESn(d) +O

(
d3

n2

)
ENn(d) +O

(
max{n, n3A}

n2

)
. (18)

Now let us show the inductive step. Assume that (12) holds for all Si(d̃) with d̃ < d and all i
and with d̃ = d and i < n+ 1. Then

ESn+1(d) =

(
1− A(d− 1) +B

n

)
M(d)

(
n+ θ

(
Cn2A+εdξ

))
+
A(d− 1) +B

n
M(d− 1)

(
n+ θ

(
Cn2A+ε(d− 1)ξ

))
+

(
D(d− 1)

mn
+m

A(d− 1) +B

n

)
c(m, d− 1)

(
n+O

(
d2+

1
A

))
+

(B −D/m)d

n
c(m, d)

(
n+O

(
d2+

1
A

))
+O

(
d2

n2

)
M(d)

(
n+ θ

(
Cn2A+εdξ

))
+O

(
d3

n2

)
c(m, d)

(
n+O

(
d2+

1
A

))
+O

(
max{n, n3A}

n2

)
.

Note that, according to (9),

M(d) =
A(d− 1) +B

A(d− 1) +B + 1
M(d− 1) +

(B −D/m)d

A(d− 1) +B + 1
c(m, d)

+

(
D
m +Am

)
(d− 1) +Bm

A(d− 1) +B + 1
c(m, d− 1). (19)

Therefore, we obtain:
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ESn+1(d) = M(d)(n+ 1) +

(
1− A(d− 1) +B

n

)
M(d) θ

(
Cn2A+εdξ

)
+
A(d− 1) +B

n
M(d− 1) θ

(
Cn2A+ε(d− 1)ξ

)
+O

(
C
dξ+2− 1

A log(d) · n2A+ε

n2

)

+O

(
max{n, n3A}

n2

)
+O

(
d2

n

)
+O

(
d4

n2

)
.

It remains to prove that for some large enough C

CM(d) · (n+ 1)2A+εdξ ≥ CM(d) · n2A+εdξ − CM(d)

(
A(d− 1) +B

n

)
· n2A+εdξ

+ CM(d− 1)

(
A(d− 1) +B

n

)
· n2A+ε(d− 1)ξ +O

(
C
dξ+2− 1

A log(d) · n2A+ε

n2

)

+O

(
max{n, n3A}

n2

)
+O

(
d2

n

)
+O

(
d4

n2

)
. (20)

First, note that

CM(d) · (n + 1)2A+εdξ − CM(d) · n2A+εdξ = CM(d) · n2A+ε · dξ
(

2A+ ε

n
+O

(
1

n2

))
.

Second, one can show that

CM(d)

(
A(d− 1) +B

n

)
dξ − CM(d− 1)

(
A(d− 1) +B

n

)
(d− 1)ξ ≥ 0

using Equation (19), the inequality (1− 1
d)−ξ ≥ 1 + ξ

d , and the fact that ξ ≥ 2
1−A .

Therefore, Equation (20) becomes:

CM(d) · n2A+ε · dξ
(

2A+ ε

n
+O

(
1

n2

))
≥ O

(
C
dξ+2− 1

A log(d) · n2A+ε

n2

)

+O

(
max{n, n3A}

n2

)
+O

(
d2

n

)
+O

(
d4

n2

)
.

It is easy to see that for some large enough C and for n ≥ Q · d2 (for some large enough Q) this
inequality is satisfied. This concludes the inductive step for d > m and also the proof of the main
part of the theorem (Equation (8)).

Now, let us show why approximation (10) holds. First, we estimate
∑d

i=m+1 Y (i) in Equa-
tion (9):

d∑
i=m+1

Y (i) =

d∑
i=m+1

1

A(i− 1) +B + 1

(
(B −D/m)i

Ai+B + 1
+

(D/m) · (i− 1)

A(i− 1) +B
+m

)
d→∞∼ Am+B

A2
log(d).

9



Note that X is a constant. Also, recall that c(m, d)
d→∞∼ Γ(m+B+1

A )d−1− 1
A

A Γ(m+B
A )

(see Eqution (5)). Finally,

M(d) = (Ad+B + 1)

(
X

Am+B + 1
+

d∑
i=m+1

Y (i)

)
· c(m, d)

d→∞∼ Ad · Am+B

A2
log(d) ·

Γ
(
m+ B+1

A

)
d−1−

1
A

A Γ
(
m+ B

A

) =
Am+B

A2
·

Γ
(
m+ B+1

A

)
Γ
(
m+ B

A

) · log(d) · d−
1
A .

This completes the proof.

3.2.2 Proof of Theorem 4

Denote by Q the event {|Nn(d)− ENn(d)| < d
√
n log(n)}. According to Theorem 2, P(Q) = 1 −

O
(
n− log(n)

)
. Let us estimate Ednn(d):

Ednn(d) = E
(
Sn(d)

dNn(d)

)
= E

(
Sn(d)

dNn(d)

∣∣∣∣Q)P(Q) + E
(
Sn(d)

dNn(d)

∣∣∣∣Q̄)P(Q̄).

Let us estimate the first term:

E
(
Sn(d)

dNn(d)

∣∣∣∣Q)P(Q) =
E
(
Sn(d)

∣∣Q)P(Q)

d (ENn(d) +O (d
√
n log(n)))

=
ESn(d)− E(Sn(d)

∣∣Q̄)P(Q̄)

d (ENn(d) +O (d
√
n log(n)))

=
ESn(d) +O

(
n1−log(n)

)
d (ENn(d) +O (d

√
n log(n)))

.

Here we used that Sn(d) = O(n). The second term can be estimated as:

E
(
Sn(d)

dNn(d)

∣∣∣∣Q̄)P(Q̄) = O
(n
d

)
P(Q̄) = O

(
n1−log(n)

d

)
.

Finally,

Ednn(d) =
M(d)

(
n+O

(
n2A+ε · dξ

))
+O

(
n1−log(n)

)
d
(
c(m, d)

(
n+O

(
d2+

1
A

))
+O (d

√
n log(n))

) +O

(
n1−log(n)

d

)

=
M(d)

d c(m, d)

(
1 +O

(
n2A+ε · dξ

n
+
d2+

1
A log (n)√
n

))
.

3.3 Hypotheses (A ≥ 1/2)

Note that the restriction A < 1
2 is essential and for A ≥ 1

2 the result is expected to be completely
different. For example, similarly to the configuration model discussed in [24], here we expect dnn(d)
to scale with n.

In the proof of Theorem 3 we first analyze ESn(m) and we have to estimate the expected sum
of the degrees of the neighbors of a new vertex n+ 1 (see Equation (13)). If A ≥ 1

2 , then the term
A
nEWn in Equation (13) grows with n (the behavior of EWn for A ≥ 1

2 is discussed, e.g., in [21]).
This leads to the fact that ESn(m) grows with n faster than linearly. Also, it can be shown that
the initial configuration Gn0

m for any constant n0 affects EWn by at least constant multiplicative

10



factor (this can be shown by following the proof of Theorem 3), EWn, in tern, affects ESn(m), and
so all Sn(d) are affected. This means that if A ≥ 1

2 , then precise asymptotics for Ednn(d), similar to
the one discussed in Theorem 4, cannot be obtained for the whole T-subclass, as this asymptotics
depends on the initial configuration Gn0

m . Also, even if the initial configuration Gn0
m is fixed, we

expect that (in the case of infinite variance of the degree distribution) dnn(d) will probably not
converge as n→∞. For a deeper discussion of this phenomenon see [24]. Therefore, in this section
we only propose some hypotheses which we then test by simulations.

Consider the case A > 1
2 . Similarly to Theorem 5, one can see that Wn asymptotically behaves

as n2A (see also [21]). Therefore, let us assume that EWn = C1 · n2A for some constant C1. We
can now approximate ESn(d) by M(d) · n2A with some function M(d) which we will compute now.
From (14) we get (omitting all error terms):

M(m)(n+ 1)2A = M(m)n2A − A(m− 1) +B

n
M(m)n2A +

A

n
C1n

2A,

so we can approximate M(m) by

M(m) =
AC1

A(m+ 1) +B
.

Similarly, for d > m we have

M(d)(n+ 1)2A = M(d)n2A − A(d− 1) +B

n
n2A (M(d− 1)−M(d)) ,

and we can get the following approximation

M(d) = M(d− 1) · A(d− 1) +B

A(d+ 1) +B
= M(m)

d−m∏
i=1

A(d− i) +B

A(d+ 2− i) +B
=

AC1(Am+B)

(Ad+B)(A(d+ 1) +B)
.

Finally, in the case A > 1
2 we have

Ednn(d) ∼ AC1(Am+B)

(Ad+B)(A(d+ 1) +B) d c(m, d)
· n2A−1 (21)

∼ C1(Am+B)
Γ
(
m+ B

A

)
Γ
(
m+ B+1

A

) · d 1
A
−2n2A−1.

By similar reasoning we can obtain an approximation of Ednn(d) for A = 1
2 . In this case, we

assume that EWn = C2 n log(n) and approximate ESn(d) by M(d)·log(n) with some M(d). Finally,
substituting everywhere A = 1

2 and B = 0, we get

Ednn(d) ∼ C2 (d+ 2)

2 d (m+ 1)
· log(n) (22)

∼ C2

2 (m+ 1)
· log(n).

In the next section, we conduct several experiments and illustrate, in particular, the above
hypotheses.
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Figure 1: The behavior of dnn(d) for A < 1/2
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Figure 2: Convergence of dnn(m+ 1) to its approximation

4 Experiments

In this section, we first illustrate our theoretical results from Section 3.1 and then our hypotheses
discussed in Section 3.3. For these purposes, we generate several graphs using a three-parameter
model from the family of polynomial graph models defined in [21]. This model belongs to the
T-subclass and by varying the parameters we can analyze the effect of A (or, equivalently, γ) and
D on dnn(d). Detailed graph generation process is described in [21].

4.1 A < 1/2

First, let us illustrate our main result for Ednn(d) (see Theorem 4). We generated several polynomial

graphs and compared the obtained values of dnn(d) with their theoretical approximation M(d)
d·c(m,d) .

We took n = 106,m = 2, D = 0.3 and considered different values of A. In other words, we fixed the
probability of a triangle formation and varied the parameter of the power-law degree distribution.
We noticed that for A < 1

3 the theoretical value of Ednn(d) is extremely close to the experiment.
However, if 1

3 < A < 1
2 , then dnn(d) turn out to be consistently smaller than their theoretical

approximation. Figure 1 illustrates this observation and shows dnn(d) for A = 0.2 and A = 0.4.
We decided to deeper analyze this phenomenon and plotted the difference between theoretical and
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Figure 4: dnn(m+ 1) versus its approximation depending on D

empirical values of dnn(d0) for some d0 and different values of A. We took A ∈ {0.2, 0.3, 1/3, 0.4}
and d0 = m+1 = 31. Figure 2 presents the behavior of err(m+1) =

∣∣∣dnn(m+ 1)− M(m+1)
(m+1)·c(m,m+1)

∣∣∣
averaged over 10 samples of graphs generated by the polynomial model with D = 0.2 and different
values of n. From Figure 2 we see that the difference between dnn(m + 1) and its theoretical
approximation decreases as n grows for all values of A. However, for A = 0.4 the converges is much

slower. The possible reason for this is the error term O
(
n3A

n2

)
appearing in the proof in the case

A > 1
3 .

We also compared the theoretical value of Ednn(d) (for A = 0.2, D = 0.3) with the asymptotic
formula Am+B

A · log(d) (see Figure 3). Interestingly, from Figure 1 it may seem that dnn(d) grows
as dν for some ν (as it was observed in many real-world networks). However, as d becomes large
(d > 104), one can indeed observe the logarithmic growth.

Finally, we looked at the behavior of dnn(d) and its approximation M(d)
d·c(m,d) depending on D.

For this purpose, we plotted dnn(d0) averaged over 10 samples for different values of D. We took
m = 2, d0 = m + 1, n = 106, and A = 0.25 (see Figure 4). First, note that the dependence on
D is almost negligible. Second, dnn(m + 1) grows linearly with D. Indeed, by the definition (see
Theorem 3) M(d) depends linearly on D and is asymptotically independent of D (for n→∞).

1In this and further experiments we choose d0 = m + 1. We want to cover at least one induction step, therefore
we can take any d0 > m.
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Figure 5: dnn(d) versus our hypothesis for A ≥ 1/2
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Figure 6: dnn(m+ 1) as a function of n versus our hypothesis for A ≥ 1/2

4.2 A ≥ 1/2

In this section, we illustrate our hypotheses discussed in Section 3.3. For this, we generated poly-
nomial graphs with A ∈ {0.5, 0.6}, D = 0.2, m = 2 and compared dnn(d) with our hypotheses (21)
and (22).

Figure 5 illustrates empirical values of dnn(d) and our approximations (21) and (22) for n = 106.

Recall that for A > 1
2 we expect (asymptotically) Ednn(d) ∝ n2A−1d

1
A
−2 and for A = 1

2 we have
Ednn(d) ∝ log(n), which does not depend on d. We see that for both values of A our hypotheses
are very close to the observed behavior.

As discussed above, for A ≥ 1
2 we expect Ednn(d) to scale with n. Therefore, we additionally

analyzed the dependence of dnn(d0) on n for d0 = m + 1 (see Figure 6) and in this case we also
obtained a good approximation. Note that the constants C1 and C2 in Equations (21) and (22)
were chosen manually, but they are the same for Figures 5 and 6.

Also, it worth noting that the case A > 1
2 corresponds to many real-world networks. In [26]

it was shown that the behavior of dnn(d) in the Buckley-Osthus model (with carefully chosen
parameter which corresponds to the degree distribution with infinite variance) is very similar to
the one observed for the web host graph.
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5 Conclusion and future work

In this paper, we studied the degree-degree correlations in the PA-class of models. Namely, we
analyzed the behavior of the average neighbor degree dnn(d). For the whole PA-class of models we

estimated Ednn(d) for the case A < 1
2 . In particular, we proved that Ednn(d)

d→∞∼ Am+B
A · log(d).

We also discussed the case A ≥ 1
2 , argued why in this case Ednn(d) scales with n, and proposed

hypotheses on its asymptotic behavior.
There are several important directions for future research in this area. First, note that in

Theorem 4 we analyze only the average value of dnn(d) and the second step is proving concentration.
Usually in such problems the Azuma-Hoeffding inequality is used (see, e.g., [16]). However, in the
case of dnn(d) we expect additional difficulties since for each d a new vertex added at some step
can hugely affect dnn(d). Another interesting direction is proving central limit theorem for the
case A ≥ 1

2 , similarly to the one in [24]. More importantly, it would be interesting to analyze the
average nearest neighbor rank proposed in [24] instead of dnn(d). However, we expect this to be
much more difficult for the PA-class of models.
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